
A Network-centric TCP for Interactive Video Delivery
Networks (VDN)

MD Iftakharul Islam, Javed I Khan

Department of Computer Science
Kent State University

Kent, OH

1 / 52



Outline
1 Interactive Video Delivery Network (VDN)
2 Why TCP?
3 Delay-based TCP
4 Network-centric TCP
5 Congestion Control

Stability Analysis
Encoder Rate Control

6 Implementation
7 Experimental Setup
8 Evaluation

Single-bottleneck Topology
Self-fairness
RTT-fairness
Multiple bottlenecks topology
Differential Fairness
Visual Interruptions

9 Data Plane Implementation
Software Defined Network 2 / 52



Congestion Control for Video Streaming

Interactive video streaming such as Skype and Google Hangout use
delay based congestion control.
The delay-based congestion control however does not have accurate
congestion information which results in:

High queuing delay in the router
Poor fairness which results in poor QoE

Network centric TCP such as XCP, RCP and so on solve this problem
by providing explicit feedback from router

Figure: Work flow of NC-TCP
3 / 52



Interactive Video Delivery Network (VDN)

XCP and RCP is however designed as TCP-friendly as they assumed
the delay sensitive traffic can compete will loss sensitive traffic.

Loss-based TCP flows results long queuing delay on the router
(Bufferebloat problem)

Solution:

Differentiated service and network slicing enable us to create exclusive
video network where interactive video flows competes among
themselves.

We have designed a TCP for Interactive Video Network. We have
shown that our newly designed TCP (NC-TCP) can perform better
than XCP and delay based TCP in Video Delivery Network.

4 / 52



Why TCP?

Video Streaming traditionally uses UDP. But UDP has many
disadvantages:

It does not have any congestion control.
Application developers needs to implement their own congestion
control.
Different implementation of congestion control interacts poorly with
each other and stability of the network is compromised.
UDP is also not NAT and firewall friendly which are highly desirable
attributes in today’s Internet

5 / 52



Why TCP?

TCP solves these problems, however TCP has some problems
regarding interactive video streaming:

The ordered delivery of TCP delays some segment delivery if a prior
segment is missing (head-of-line blocking problem ).
Retransmission is also not required in interactive video streaming
These problems can be solved by implementing different TCP
implementation. For example:

TCP Hollywood allows unordered segment delivery.
Retransmission can be avoided by extensive packet caching in the
router.

6 / 52



Delay-based TCP

Video streaming traditionally uses delay based congestion control.

It modifies the congestion window based on RTT.

TCP Vegas, TCP FAST

RTT based TCP loses throughput in the presence of reverse-path
congestion.

To solve this problem, LEDBAT uses one-way delay based congestion
control.

LEDBAT however suffers latecomer effect: second flow may starve
first flow.

One-way delay gradient has been used to overcome the late comers
effect.

TCP CDG, TCP Inigo
Google Hangout (doesnt use TCP though)

7 / 52



Delay-based TCP

Delay-based TCP controls the congestion window based on one-way
delay observed in the receiver.

It has no way of knowing about the actual queuing delay in the
network. This is why, it faces several problems:

It cannot result near-zero queuing delay in the network.
It performs poorly in fairness. This is why some flows experience poor
throughput which results poor video quality in video streaming.

Recent advances in Software Defined Networks (SDN) can solve this
problem

8 / 52



Network-centric TCP

Figure: Work flow of NC-TCP

9 / 52



Network-centric TCP

Routers play an active role in allocating throughput.

NC-TCP uses rate-based congestion control rather than window
based congestion control.

Window-based TCP produces bursty traffic. Rate-based congestion
control shape the traffic before sending
It also ensures that the network does not have more traffic than it is
able to handle.
We used TCP-pacing

NC-TCP has been implemented as a new TCP option.

Figure: NC option

10 / 52



NC-TCP Workflow

Senders specify the required throughput in SYN and DATA segment.

Routers along the path inspect the option header and allocate the
feedback throughput.

A router will set the feedback throughput only when the feedback
throughput is smaller than the feedback throughput allocated by a
previous router.

It ensures that feedback throughput is calculated based on the most
congested link along the path

Receiver copies the feedback throughput in the ACK segment.

Sender sets the sending rate based on the ACK segment.

11 / 52



Feedback Throughput Calculation

We have divided the feedback controller into two parts:
Delay Controller: Proportional Integral (PI) controller
Fairness Controller: Min-max fairness

Delay Controller ∑
ri (t) = α[c(t) − q(t)] (1)

where the
∑

ri (t) is the aggregate feedback throughput, c(t) is the
bottleneck link capacity, q(t) is the queue length in bytes and α is the
coefficient.

Fairness Controller

ri (t) =
α[c(t) − q(t)]

N(t)
(2)

where ri (t) is the feedback throughput for flow i and N(t) is the number
of flows

12 / 52



Stability Analysis

Let us assume that the feedback delay is tf

As the feedback rate becomes the sending rate after tf ,the sending
rate at time t can be written as

xi (t) =
α[C − q(t − tf )]

N
(3)

The queuing-delay gradient can be represented as

˙q(t) =
∑

xi (t) − C (4)

As flows adapt their sending rate xi (t) at the same rate,∑
xi (t) = Nxi (t) for all i .

˙q(t) = Nxi (t) − C (5)

˙q(t) = −αq(t − tf ) + C (α− 1) (6)

13 / 52



Stability Analysis

˙q(t) = −αq(t− tf ) +C (α− 1) is an autonomous differential equation

The autonomous system is stable if ¨q(t∗) < 0 where q(t∗) represents
the queuing delay at the equilibrium point

This is why the system is stable if α > 0.

If the system is perturbed, the queue will be drained at
−αq(t − tf ) + C (α− 1) rate and eventually reaches the equilibrium
point

At the equilibrium point, ˙q(t) = 0. So we get

q(t − tf ) =
C (α− 1)

α
(7)

C(α−1)
α is the queuing delay at the equilibrium point.

Here we want the queuing delay to be be zero while maximizing the
throughput. That is why we set α = 1.

14 / 52



Encoder Rate Control

The encoding rate of video cannot be changed quickly in order to
avoid congestion (takes more than 500ms)

The actual encoder output rate also fluctuates randomly around the
input target rate.

NC-TCP based application sets the target rate based on the feedback
rate of the network. (Motivated from iTCP)

As NC-TCP uses TCP-pacing, packets wait in the TCP’s sending
buffer (congestion window) to be scheduled to sent out

RTT produced by the NC-TCP is not exactly same as the propagation
delay
RTT/RTTmin indicates how much encoder has overshot with respect
to the network throughput. Here RTTmin is the minimum RTT which
is considered as the propagation delay

We set the encoder target rate as Rt(t) = ri (t)
RTT

RTTmin

where ri (t) is the

feedback throughput

15 / 52



NC-TCP Implementation

We have implemented NC-TCP in Linux kernel. Source:
https://github.com/tamimcse/Linux

NC-TCP implementation has two parts: NC-TCP host and NC-TCP
router

We have modified the Linux TCP stack to implement the NC-TCP
host.

We have implemented the NC-TCP router as a Qdisc kernel module
in Linux router (ip forward=1).

We also modified the kernel to trace system variables such as
throughput, queue length, and so on.

16 / 52



Video Streaming Application

We also developed a TCP based video streaming application based on
GStreamer.

https://github.com/tamimcse/gst-streamer (350 lines of C code)

The application reads a video file, encode in H.264 constant bit rate.

The bitrate is set by the feedback rate received from the TCP stack.
It uses It uses getsockopt system call.

The application stream the video frames to the client. Client displays
the frames as soon as it receives it.

17 / 52



Experimental Setup

Figure: Topology

The topology is created in Mininet.
All the nodes in the picture is a Linux container (light-weight VM)
All the links are virtual ethernet (veth) pair
The delay and throughput on the links are set by NetEm and htb
(hierarchical token bucket) Qdisc.
The setup takes 200 lines of Python code. We also used Shell Scripts
extensively.

18 / 52



Experiment

Figure: Topology

We streamed a clip from Big Buck Bunny in our experiment.

The sender produces 512X340 video at 30 fps in H.264 format

The three senders stream video simultaneously to the three receivers

The experiment is conducted for 80 seconds.

19 / 52



Evaluation

Loss based TCP such as TCP CUBIC results in long queuing delay.

Recently proposed Google BBR also results in long queuing delay.

We compared NC-TCP to TCP Inigo and XCP

We found TCP Inigo is a representative of one-way delay gradient
based TCP.

The workflow of XCP is similar to NC-TCP. But it has been designed
for short-lived flows.

We have found the implementation TCP CUBIC, TCP BBR and TCP
CDG in Linux kernel.

The Linux kernel implementation of TCP Inigo is also shared by it’s
author. We also have implemented the XCP in Linux kernel.

We compared the queuing delay on the bottleneck router for
different protocols.

We also have compared the fairness for each protocol. Note that
higher fairness indicates that all the flows get higher throughput from
the bottleneck link

20 / 52



NC-TCP vs XCP

XCP (eXplicit Congestion Control) is the first network-assisted
congestion control algorithm where explicit rate is allocated by the
router.

XCP makes no assumption regarding the traffic characteristics
whereas NC-TCP utilizes the traffic characteristics to optimize the
throughput allocation.

XCP uses window-based congestion control whereas NC-TCP uses
rate based congestion control.

XCP uses persistent queue size, the minimum queue size during a
control interval. NC-TCP however uses instant queue size. This
enables NC-TCP to reacts to congestion quicker than XCP.

NC-TCP feedback throughput is calculated using α[c(t)−q(t)]
N(t) whereas

XCP feedback is αRTT [c(t)−
∑

x(t)]−βq(t)
N(t) where RTT is the average

RTTs of all the flows and
∑

x(t) is the aggregate incoming-rate to
the switch.

21 / 52



Bottleneck Queuing Delay
Single-bottleneck Topology

The queuing delay is q(t)
B where B is the bottleneck throughput.

Figure: Queue Backlog

22 / 52



Throughput
Single-bottleneck Topology

Figure: Throughput
23 / 52



Fairness Index
Single-bottleneck Topology

The fairness index has been calculated using the formula
(
∑n

i=1 xi )
2

n
∑n

i=1 xi
2

where xi is the throughput of flow i and n is the total number of flows

Figure: Jain’s fairness index

24 / 52



Round-trip time
Single-bottleneck Topology

Figure: RTT
25 / 52



Self-fairness
Three TCP Inigo flows 15 seconds apart

Figure: Three TCP Inigo flows 15 seconds apart
26 / 52



Self-fairness
Three NC-TCP flows 15 seconds apart

Figure: Three NC-TCP flows 15 seconds apart
27 / 52



RTT-fairness

Figure: Topology

We modified the topology such that each flow has different RTTs:
80ms, 100ms and 120ms

28 / 52



Fairness Index
RTT-fairness

Figure: Fairness Index
29 / 52



Queuing delay
RTT-fairness

Figure: Queuing delay in the bottleneck router
30 / 52



Multiple bottlenecks topology

Figure: The throughput of bottleneck and access links are 660kbps and 1024kbps
respectively

31 / 52



Queuing delay
Multiple bottlenecks topology

32 / 52



Fairness Index
Multiple bottlenecks topology

33 / 52



Differential Fairness

Interactive VDN needs to support heterogeneous endpoints such as
smart phones, laptops, TV and VR headset at the same time

The videos used in different endpoints often differ in encodings,
resolutions and frame rates.

Network-centric congestion control has a major advantage over
host-centric approach in this regard

As a router is aware of the throughput requirement of each flow
passing through it, it can apply differential or weighted fairness in
throughput allocation

34 / 52



Visual Interruptions

Table: Number of visual interruptions

Single bottleneck
topology

Multiple bottle-
neck topology

TCP Inigo 2 20

XCP 0 0

NC-TCP 0 0

35 / 52



Thank You

36 / 52


	Interactive Video Delivery Network (VDN)
	Why TCP?
	Delay-based TCP
	Network-centric TCP
	Congestion Control
	Stability Analysis
	Encoder Rate Control

	Implementation
	Experimental Setup
	Evaluation
	Single-bottleneck Topology
	Self-fairness
	RTT-fairness
	Multiple bottlenecks topology 
	Differential Fairness
	Visual Interruptions

	Data Plane Implementation
	Software Defined Network


