
Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

CP-Trie: Cumulative PopCount based Trie for
IPv6 Routing Table Lookup in Software and

ASIC

MD Iftakharul Islam, Javed I Khan

Department of Computer Science
Kent State University

Kent, OH, USA.

IEEE HPSR, 2021

1 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Outline

Routing table lookup

Existing solutions

CP-Trie based IP lookup

Implementations

Evaluation in ASIC and Software

2 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Routing table lookup

• Also known as ”IP lookup” or ”FIB lookup”
• It involves performing the Longest prefix match (LPM) in

order to find the next-hop.

Table: An example routing table

Route Prefix Next-hop
r1 200a:410:8000::/40 2
r2 200a:410:8080::/44 3
r3 200a:410:8000:702::/64 1
r4 200a:410:8000:702::0df/128 2

• Lookup(200a:410:8088:500::300) =⇒ {r1, r2} =⇒ 3
• IP lookup is generally performed using Trie or Hash based

algorithms. Here, Trie based algorithm is our main focus.

3 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Challenges of IP lookup

• Extremely high throughput needed.
• 4.8 Tb/s Brodcom Jericho2 chip (used in many core

routers) can forward 2 billion packets per second.
• Forwarding table of a core router can be extremely large

• Already exceeded 100k+ IPv6 entries and growing very
rapidly.

• An IPv6 prefix can be 128 bits while IPv4 prefix can be 32
bits long. Thus, IPv6 lookup may need 4× processing and
memory compared to IPv4 lookup.

4 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Existing solutions
IP lookup

implementation

Software Pipelined ASIC TCAM FPGA GPU

Trie

Hash

Trie

Hash

• High-speed routers generally use ASIC and TCAM.
• This paper focuses on Software and ASIC based IP lookup.
• Pipelined ASIC use algorithmic solution (like software) in

hardware.
• Software and ASIC based IP lookup solutions can be

categorized as Trie and Hash based solutions.
• Trie based solutions are the main focus of this paper.

5 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Trie based IP lookup algorithms

1997

Luleå
[SIGCOMM]

1999

LC-Trie
[JSAC]

2004

Tree Bitmap
[SIGCOMM CCR]

2009

SST
[ICNP]

2011

OET
[INFOCOM]

2014

SAIL
[SIGCOMM]

2015

Poptrie
[SIGCOMM]

• Poptrie is the state of the art IP lookup because it requires
very small memory and can perform very fast lookup.
• Poptrie however uses 6-bit stride.
• CP-Trie is extension of Poptrie which can uses 8− 16 bit

stride, thus results more efficient lookup.

6 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Poptrie based IP lookup

7 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Limitation of Poptrie

• Poptrie uses 6-bit stride. This is because PopCount CPU
instruction can only process 64 bits (26 = 64).
• As a result, Poptrie splits an IPv6 routing table table into 20

levels: level 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82,
88, 94, 100, 106, 112, 118, 124 and 130.
• In CP-Trie, we store cumulative PopCount along with

bitmap with allows it to use longer stride (8− 16 bit).
• CP-Trie splits an IPv6 routing table into 15 levels: level 16,

24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120 and
128.

8 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Benefits of longer stride
• Fewer number of steps

• Results in faster lookup
• Lower power consumption in ASIC

• Fewer memory accesses (critical in pipelined ASIC).
• In pipelined ASIC, # of memory accesses = # of SRAM

blocks needed (each pipeline stage has to access SRAM in
parallel.).

• It also has been found that fewer large SRAM blocks are
more area efficient than many smaller SRAM blocks. This
is because 85% area of a SRAM is used for control logic.

• This is why, reducing the number of memory access
reduces the number of SRAM blocks needed in ASIC which
results in smaller area.

9 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

CP-Trie based IP lookup

(a) Lookup in CP-Trie

10 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Implementations
• Implemented both Poptrie and CP-Trie in C and Verilog

RTL. Source code is publicly available at
https://tamimcse.github.io/cp-trie/.
• We use a high-level synthesis (HLS) tool named C2RTL

[HPSR 2021] to generate the Verilog RTL code.
• We generated physical chip layout using OpenROAD EDA.

We also evaluate power, area and timing characteristics of
ASIC using OpenROAD.

Figure: C code to physical chip layout generation
11 / 18

https://tamimcse.github.io/cp-trie/


Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Evaluation in ASIC

Poptrie CP-Trie
Clock speed 1 GHz 1 GHz
Internal Power 76.5 mW 64.6 mW
Switching Power 24.4 mW 22.2 mW
Leakage Power 1.15 mW 0.926 mW
Total Power 102.05 mW 87.726 mW
Area 0.0658 mm2 0.0523 mm2

• SRAM implemation is missing in Open Cell Library. We
use registers instead.
• Poptrie needs 79 SRAM blocks and CP-Trie needs 59

SRAM blocks. So, we expect CP-Trie to be even more
efficient in area and power compared to Poptrie when
SRAM is incorporated.

12 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Evaluation in Software

Table: FIB dataset

Name # of prefixes Longest prefix length
fib0 105,363 48
fib1 102,126 48
fib2 79,431 64
fib3 103,067 128
fib4 105,957 128
fib5 102,739 64
fib6 104,235 48
fib7 100,899 64
fib8 102,731 128

• We obtained the data set from RouteView project. The
snapshot was taken on January 17, 2021 at 3 PM EST.

13 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Memory consumption

Figure: Memory consumption for different FIBs

14 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Lookup traffics

• Prefix traffic consists of the prefixes in our FIBs. Prefix
traffic ensures that the lookups are spread across a FIB.
• Repeated traffic consists of 224 randomly selected

prefixes from the FIBs (with possible duplicates) and
adding random bits at the ”don’t care” fields of the prefixes.
Each IP in repeated traffic is looked up 10 times repeatedly.
Repeated traffic is analogous to real Internet trace.
• Sequential traffic consists of 28 sequentially increasing

IPv6 addresses. The start address of the sequential traffic
is selected such that all the IPs in sequential traffic requires
matching up to the last level of the FIB. We use sequential
traffic to measure the worst lookup throughput for a FIB.
• Random traffic consists of 224 random IPv6 addresses

within 2000::/4.

15 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Lookup performance

(a) Prefix traffic (b) Repeated traffic (analogous to
real Internet trace)

(c) Sequential traffic (d) Random traffic (not a realistic
traffic)

16 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Update performance

Figure: Average insertion time per prefix (smaller is better)

17 / 18



Routing table lookup Existing solutions CP-Trie based IP lookup Implementations Evaluation in ASIC and Software

Thank You

18 / 18


	Routing table lookup
	Existing solutions
	CP-Trie based IP lookup
	Implementations
	Evaluation in ASIC and Software

