
Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

C2RTL: A High-level Synthesis System for IP
Lookup and Packet Classification

MD Iftakharul Islam, Javed I Khan

Department of Computer Science
Kent State University

Kent, OH, USA.

IEEE HPSR, 2021

1 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

Outline

Motivation

Existing HLS tools

Programming convention in C2RTL

C2RTL design flow

Evaluation

2 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

IP lookup and packet classification
• Two of the most fundamental operations of a router.
• IP lookup =⇒ longest prefix match

Table: An example forwarding table

Prefix Next-hop
131.123.252.42/32 1
169.254.0.0/16 2
169.254.192.0/18 3

• Packet classification =⇒ exact/prefix match to find action

Table: An example packet classifier

Rule Src. IP Dest. IP Src. Port Dest. Port Protocol Action
r1 01100∗ 01100∗ 111 111 80 enqueue
r2 11010∗ ∗ 10∗ 11∗ 22 drop
r2 11∗ 11011∗ 10∗ 11∗ 22 modify
r4 ∗ ∗ ∗ ∗ * forward

• Implemented in TCAM or Pipelined ASIC.
• ASIC generally executes Trie based IP lookup and packet

classification algorithms in hardware.
3 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

ASIC Design

• ASIC is developed register-transfer (RTL) level Verilog or
VHDL =⇒ extremely complex, requires huge effort
• Need to use circuit level abstractions
• Need to keep track of path latency to schedule operations

at right time.

• This calls for designing ASIC in a higher level.

4 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

High-level Synthesis

• High-level Synthesis (HLS) is a design methodology where
pipelined ASIC is developed using high-level languages
such as C or SystemC.
• HLS generates corresponding Verilog or VHDL RTL from C

or SystemC code.
• Higher design productivity and lower complexity
• Shorter simulation cycle.

• HLS has not been adopted in routing/switching chips, to
the best of our knowledge.

5 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

C2RTL High-level Synthesis

• Primarily designed for IP lookup or packet classification,
but we would like to extend it for other data plane functions
as well.
• C2RTL takes an IP lookup or packet classification

algorithm in C as input and generates corresponding
Verilog RTL.
• Implemented an a GCC plugin
• We made the source code publicly available
https://tamimcse.github.io/c2rtl.

6 / 17

https://tamimcse.github.io/c2rtl


Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

Existing HLS tools

• Current HLS tools focus on C or SystemC based system
design.
• Mentor’s Catapult
• Cadence’s Stratus
• NEC’s CyberWorkBench
• Synopsys’ Synphony
• SWSL [ANCS 2013] (designed for IP lookup)

• Switch compiler for programmable ASIC.
• LEAP [ANCS 2012], Domino [SIGCOMM 2016]

• HLS tools for FPGA.
• Xilinx’s Vivado
• Bambu [FPL 2013]
• LegUp [FPGA 2011]

7 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

Programming convention in C2RTL

• An input program in C2RTL is implemented in C language,
but with several restrictions.

Table: programming restrictions in C2RTL

No loop (while, for, do-while)
No unstructured control flow (goto, break, continue)
No ternary operation
No dynamic memory allocation
No global variables
No structure
No switch
No function call
Each branch has to have a separate return statement

8 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

C2RTL design flow

9 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

Intermediate code generation by GCC

(a) Example IPv4 Lookup in C (b) Intermediate code in SSA and
CFG form

10 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

Control and Data flow graph (CDFG)

11 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

Scheduling and Register Insertion

• As Late as Possible (ALAP) scheduling [TCAD 1991].
• We obtained the latency of operations from Bambu’s [FPL

2013] 45 nm Nandgate Open Cell library characterization.
• We insert register when the result of an operation crosses

cycle boundary.
12 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

RTL Generation

• We implement each operation using a Verilog module from
a component library obtained from Bambu.
• We implement each arrays using register file and SRAM.

13 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

MUX tree generation
Table: An example predicates for a SSA φ operation

Selectors
Inputs S1 S2 S3 S4
I1 ∗ ∗ ∗ 0
I2 ∗ 1 1 1
I3 ∗ 0 1 1
I4 0 ∗ 0 1
I5 1 ∗ 0 1

(a) Predicates splitting tree (b) Corresponding MUX tree 14 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

Evaluation
• We evaluate C2RTL by implementing SAIL [SIGCOMM

2014], Poptrie [SIGCOMM 2015] and CP-Trie [HPSR
2021] based IPv6 lookup and TabTree [ANCS 2019] based
packet classification.
• We evaluate the resulting Verilog using Icarus Verilog

simulator. It shows that the generated Verilog is
functionally correct.

Figure: C code to physical chip layout generation

• We use OpenROAD to generate physical chip layout from
the Verilog.

15 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

Evaluation in ASIC

Poptrie SAIL CP-Trie TabTree
Clock speed 1 GHz 1 GHz 1 GHz 1 GHz
Internal Power 76.5 mW 0.722 mW 64.6 mW 0.033 mW
Switching Power 24.4 mW 0.229 mW 22.2 mW 0.0054 mW
Leakage Power 1.15 mW 0.0108 mW 0.926 mW 0.00061 mW
Total Power 102.05 mW 0.961 mW 87.726 mW 0.0391 mW
Area 0.0658 mm2 0.00061 mm2 0.0523 mm2 0.000034 mm2

16 / 17



Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation

Thank You

17 / 17


	Motivation
	Existing HLS tools
	Programming convention in C2RTL
	C2RTL design flow
	Evaluation

