Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation
0000 o o 000000 000

C2RTL: A High-level Synthesis System for IP
Lookup and Packet Classification

MD lftakharul Islam, Javed | Khan

Department of Computer Science
Kent State University
Kent, OH, USA.

IEEE HPSR, 2021

1/17

Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation
0000 o o 000000 foYele}

Outline

Motivation

Existing HLS tools

Programming convention in C2RTL

C2RTL design flow

Evaluation

2/17

Motivation
@000

¢ Two of the most fundamental operations of a router.

IP lookup and packet classification

IP lookup = longest prefix match

Table: An example forwarding table

Packet classification = exact/prefix match to find action

Prefix Next-hop
131.123.252.42/32 | 1
169.254.0.0/16 2
169.254.192.0/18 3

Table: An example packet classifier

Rule| Src. IP

Dest. IP

Src. Port

Dest. Port

Protocol

Action

r 01100+

01100+

111

111

80

enqueue|

r2 | 11010«

*

10

11x

22

drop

r2 | 11«

11011+

10+

11x

modify

r4 *

%

*

*

22

forward

Implemented in TCAM or Pipelined ASIC.

ASIC generally executes Trie based IP lookup and packet

classification algorithms in hardware.

3/17

Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow

ASIC Design

e ASIC is developed register-transfer (RTL) level Verilog or
VHDL — extremely complex, requires huge effort

* Need to use circuit level abstractions
* Need to keep track of path latency to schedule operations
at right time.

¢ This calls for designing ASIC in a higher level.

Evaluation

4/17

Motivation
[e]e] e}

High-level Synthesis

¢ High-level Synthesis (HLS) is a design methodology where
pipelined ASIC is developed using high-level languages
such as C or SystemC.

e HLS generates corresponding Verilog or VHDL RTL from C
or SystemC code.

® Higher design productivity and lower complexity
e Shorter simulation cycle.

e HLS has not been adopted in routing/switching chips, to
the best of our knowledge.

5/17

Motivation
oooe

C2RTL High-level Synthesis

e Primarily designed for IP lookup or packet classification,
but we would like to extend it for other data plane functions
as well.

e C2RTL takes an IP lookup or packet classification
algorithm in C as input and generates corresponding
Verilog RTL.

¢ Implemented an a GCC plugin

¢ We made the source code publicly available
https://tamimcse.github.io/c2rtl.

6/17

https://tamimcse.github.io/c2rtl

Existing HLS tools
(]

Existing HLS tools

e Current HLS tools focus on C or SystemC based system
design.

® Mentor's Catapult

e Cadence’s Stratus

* NEC’s CyberWorkBench

® Synopsys’ Synphony

e SWSL [ANCS 2013] (designed for IP lookup)
e Switch compiler for programmable ASIC.

e LEAP [ANCS 2012], Domino [SIGCOMM 2016]
e HLS tools for FPGA.

¢ Xilinx’s Vivado

* Bambu [FPL 2013]

e LegUp [FPGA 2011]

7/17

Programming convention in C2RTL
°

Programming convention in C2RTL

¢ An input program in C2RTL is implemented in C language,
but with several restrictions.

Table: programming restrictions in C2RTL

No loop (while, for, do-while)

No unstructured control flow (goto, break, continue)
No ternary operation

No dynamic memory allocation

No global variables

No structure

No switch

No function call

Each branch has to have a separate return statement

8/17

Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow Evaluation
(o] o]

C2RTL design flow

Algorithm in C

v

| Intermediate code generation (GCC Plugin) ‘

Intermediate code (in SSA and CFG form)

¥
| Microarchitecture optimization |

Intermediate code (in SSA and CFG form)

‘ CDFG construction |
CDFG

| Scheduling ‘

Start time is added to each operation in CDFG

| Register Insertion |

Modified CDFG with added registers

| RTL Generator |

v

Verilog RTL

9/17

Motivation
0000

C2RTL design flow Evaluation

Existing HLS tools
o 00000 000

Programming convention in C2RTL
o

Intermediate code generation by GCC

bb_2
idx_22 = ip_21(D) >> 16;
_1 = (long unsigned int) idx_22;
2= _1%2;
_3=C16_23(D) + _2;
_4=%3;
cidx_25 = (unsigned int) _4;
i (cidx_25 != 0)

#include <stdint.h>

uint8 t sail(uint32_t ip, uint8_t N16[100 — /
uintl6é_t C16[100], uint8_t N24[100], 5 = cidx 25 << 8;
uintl6 t C24[100], uint8 t N32[100]) { b =ip21D)>> 8
7= _6&255;

bb_6

_18 = (sizetype) idx_22;

_19 = N16_26(D) + _18;
27 =*19;

idx 28=_5+ _7;

unsigned int idx, cidx; _8 = (long unsigned int) idx_28;
9= 8*2;

idx = ip >> 16; _10 :_c24__29(D)+_9;

Eidx = C16[1idx]; cidx_30 f(insig-nleﬂdlint)_ll;
if (cidx) { if (cidx_30 != 0)
idx = (cidx << 8) + ((ip >> 8) & 255)
cidx = C24[idx]; /
if (cidx) { bb_4

idx = (cidx << 8) + (ip & 255); 12 =cidn30<<8; bb_5

}

return N32[idx];
} else {
return N24[idx];

}
} else {

return N16[idx];
}

_13 = ip_21(D) & 255;
idx 33=_12+ 13;

_14 = (sizetype) idx_33;
15 = N32_34(D) + _14;

35=%15;

_16 = (sizetype) idx_28;
17 = N24_31(D) + _16;
32=+17

bb_7
<L4>[0.00%]:
return _20;

10/17

Motivation

Existing HLS tools
0000 o

Programming convention in C2RTL
o

C2RTL design flow
008000

Control and Data flow graph (CDFG)

BB3

BBE2

@i 22=ip_21 D>>16

@ 2= 1<<1

(5) cide_?5 = cast (4)

(8 6-ip_2l D>6
1
(9 _7= 6&255|[() _5=cx 25<<8

(10) idx_28= 5+ 7

(11) B = cast (id_28)

(13)_10=C2429 D+ 9

(14)_11=-_10

(15) cidx_30 = cast (_11)

B34
[_12 = cinx 30 << 8] [(18)_13=ip 21 D&255]

(19) i 33=_12+_13

(20) _14 = cast (dx_33)

(21) _15=N3234 D+_1

(24)_17=N2431D+_16

Predicate: (ifouts, ifout16) = (1, 0)

Predicate:|ifou, ifout16) = (0, %

BBS

(idx_28)

]

BB7

Predicate: (ifouts, ifoutl6) = (1, 1) /

| }tzs) mux0= MUX (32,] 35 Seledtor:ifout16 |

1

‘:31) MUl = MUX (_27, _musD) Selectorifouts. }-

e

Evaluation

11/17

C2RTL design flow
000000

Scheduling and Register Insertion

[

EEEFEEEEEDEE

¢ As Late as Possible (ALAP) scheduling [TCAD 1991].

e We obtained the latency of operations from Bambu’s [FPL
2013] 45 nm Nandgate Open Cell library characterization.

e We insert register when the result of an operation crosses
cycle boundary.

12/17

C2RTL design flow
000000

RTL Generation

e We implement each operation using a Verilog module from
a component library obtained from Bambu.

¢ We implement each arrays using register file and SRAM.

13/17

Motivation Existing HLS tools Programming convention in C2RTL C2RTL design flow
0000 o o 00000@

MUX tree generation

Table: An example predicates for a SSA ¢ operation

Selectors
Inputs 31 Sg 33 S4
14 x* [x [% |0
I * (1 11 |1
I3 * [0 |1 |1
Iy 0O |x*x [0 |1
Is 1%]0 |1

Il IZ |3 |4 |5

2 3

.ﬁ .FE

a) Predicates splitting tree (b) Corresponding MUX tree

Evaluation

[e]e]e}

14/17

Evaluation
@00

Evaluation

We evaluate C2RTL by implementing SAIL [SIGCOMM
2014], Poptrie [SIGCOMM 2015] and CP-Trie [HPSR
2021] based IPv6 lookup and TabTree [ANCS 2019] based
packet classification.

We evaluate the resulting Verilog using Icarus Verilog
simulator. It shows that the generated Verilog is
functionally correct.

Algorithm in C
C2RTL
45nm Nandgate
Open Cell library | Verilog RTL
OpenROAD

GDSll layout Power, area and timing report

Figure: C code to physical chip layout generation

We use OpenROAD to generate physical chip layout from
the Verilog.

15/17

Evaluation in ASIC

Evaluation

oeo

Poptrie SAIL CP-Trie TabTree
Clock speed 1 GHz 1 GHz 1 GHz 1 GHz
Internal Power 76.5 mW 0.722 mW 64.6 mW 0.033 mW
Switching Power | 24.4 mW 0.229 mW 222 mW 0.0054 mW
Leakage Power | 1.15 mW 0.0108 mW 0.926 mW 0.00061 mW
Total Power 102.05 mW | 0.961 mW 87.726 mW | 0.0391 mW
Area 0.0658 mm? | 0.00061 mm? | 0.0523 mm? | 0.000034 mn?

16/17

Thank You

	Motivation
	Existing HLS tools
	Programming convention in C2RTL
	C2RTL design flow
	Evaluation

