
SAIL Based FIB Lookup in a Programmable Pipeline
Based Linux Router

MD Iftakharul Islam, Javed I Khan

Department of Computer Science
Kent State University

Kent, OH, USA.

1 / 25



Outline

1 Problem statement

2 A look inside a Linux router

3 SAIL based FIB lookup

4 SAIL with Population Counting

5 Implementation

6 Evaluation of SAIL in a Programmable Pipeline

7 Evaluation of SAIL in Linux kernel

2 / 25



Longest Prefix Matching

A router needs to perform longest prefix matching to find the
outgoing port.

Table: Routing table (also known as FIB table)

Prefix Outgoing port
10.18.0.0/22 eth1
131.123.252.42/32 eth2
169.254.0.0/16 eth3
169.254.192.0/18 eth4
192.168.122.0/24 eth5

169.254.198.1 =⇒ eth4
169.254.190.5 =⇒ eth3

3 / 25



Explosion of Routing Table

Figure: The number of routes in the Internet backbone routers

A backbone router needs to perform around 1 billion routing table
lookups per second to sustain the line rate.
Performing FIB lookup at such a high rate in such a large routing
table is particularly challenging.

4 / 25



FIB lookup in a Linux router

Figure: Linux Router

Here Linux kernel works as a control plane and a programmable
pipeline based VLIW processor works as a dataplane.
We have implemented our FIB lookup in Linux kernel.
We also have implemented the FIB lookup in Domino which would
be executed on the dataplane.

5 / 25



SAIL based FIB Lookup

Recently several FIB lookup algorithms have been proposed that
exhibit impressive lookup performance.

These include SAIL [SIGCOMM 2014], Poptrie [SIGCOMM 2015].
We chose SAIL as a basis of our implementation as it outperforms
other solutions

The main drawback of SAIL is its very high memory consumption.
For instance, it consumes 29.22 MB for our example FIB table
with 760K routes.
We have used population-counting (a data structure) that reduces
memory consumption up to 80%.
SAIL has two variants namely SAIL L and SAIL U.
We have implemented both variants with population-counting in
both Linux kernel and Domino.
Our implementation shows that SAIL is able to perform FIB lookup
at line rate in a VLIW processor.
We also have compared the performance of SAIL L and SAIL U
(with population-counting) in Linux kernel and Domino.

6 / 25



SAIL based FIB lookup

We first show how SAIL U constructs its data structure.
SAIL divides a routing table into three levels: level 16, 24 and 32.
However for simplicity, in this example, we divide the routing table
into level 3, 6 and 9.
We then show how population-counting is used on the data
structure.

(a) FIB (b) Binary tree corresponding to the FIB

7 / 25



SAIL based FIB lookup (level pushing)

(a) Binary tree (b) Solid nodes in level 1− 2 are pushed to
level 3; solid nodes in level 4− 5 are pushed
to level 6; solid nodes in level 7− 8 are
pushed to level 9

Figure: Tree construction in SAIL
8 / 25



SAIL based FIB lookup (array construction)

(a) Tree

(b) N is the next-hop array and C is the chunk ID array. There will be a chunk
in level 6 for each prefix in level 3 which has a longer prefix. Most of the
entries in C6 remains 0 in practice. However it consumes around 23.16
MB in a real backbone router

Figure: Tree construction in SAIL

9 / 25



Population counting

It’s a data structure which was presented in the book Hacker’s
Delight (2002).

(a) N and C array

(b) C6 is encoded with bitmap and a revised C6 where all the zero entries are
eliminated. This reduces the memory consumption of SAIL by up to 80% in a
real backbone router

10 / 25



Population counting

As SAIL processes 8 bits in every step of the way (level 16, 24
and 32), we maintain a 256-bit bitmap.

Figure: Chunk structure

During FIB lookup, we need to find out how many 1-bit
(population-count) are there before i th(0 < i < 255) bit.
This will generally require calling POPCNT CPU instruction 4(256

64 )
times because POPCNT can process only 64 bit at once.
To avoid that, we divide the 256-bitmap into four parts. Each part
maintains its own start index. The start index contains the
pre-calculated population count prior to that part. This is why, we
don’t need to calculate the POPCNT for the whole chunk. Instead
we need to calculate the POPCNT for a part of the chunk.
We map i to a part by simply dividing it by 64. This is why we only
require calling POPCNT only once and a DIVISION operation. 11 / 25



Population counting in Poptrie

Population counting was also used in Poptrie. However they use
64-bit bitmap.
This is why, they can apply POPCNT directly. However they will
require visiting more levels (16, 22, 28, 34) than SAIL which
reduces its lookup performance.
Our implementation of SAIL uses population-counting while
visiting just three levels (16, 24, 32).

12 / 25



SAIL based FIB Lookup with population counting

13 / 25



Implementation

We have implemented SAIL L and SAIL U (with population
counting) in Linux kernel 4.19 (contains around 2500 lines of C
code).
Our implementation include FIB lookup, FIB update, FIB delete
and FIB flush.
We also have implemented test code in linux kernel to evaluate
the performance of our algorithms (around 400 lines of C and
assembly code).
Finally we have implemented SAIL L and SAIL U (with population
counting) using Domino programming language (around 150
lines).
We have made our implementation publicly available in Github.

14 / 25



SAIL in a Programmable Pipeline

Domino programming language enables us to develop programs
for programmable pipeline based VLIW processors.
A Domino program successfully compiled by domino-compiler is
guaranteed process packets at line rate (processing 1 billion
packets per second on a 1 GHz VLIW processor).
Our Domino implementation is successfully compiled by
domino-compiler.
This shows that a programmable pipeline based a VLIW
processor can run SAIL with population-counting at line rate.

15 / 25



SAIL in a Programmable Pipeline

A Domino compiler enables us to evaluate a Domino program
without needing actual hardware
Actual hardware doesn’t exist yet (although Verilog
implementation exists).
Domino compiler generates a dependency graph that shows how
the program would be executed on a pipeline (We have made the
graph publicly available)

Table: Comparison between SAIL U and SAIL L (with population-counting)

SAIL U SAIL L
Number of pipeline stages 15 32
Maximum # of atoms (ALU) per stage 5 6
Processing latency (for each packet) 15 ns 32 ns

16 / 25



Dataset

We have evaluated our Linux kernel implementation with FIBs
from real backbone router (obtained from RouteView project)
RouteView project provide us with RIB in MRT format. We then
convert the MRT RIB to FIB using BGPDump and our custom
Python script (both data and the scripts are publicly available).
We conducted our experiment in a Laptop. We have created 32
virtual ethernet to emulate a router.

Name AS Number # of prefixes # of next-hops Prefix length
fib1 293 759069 2 0− 24
fib2 852 733378 138 0− 24
fib3 19016 552285 236 0− 32
fib4 19151 737125 2 0− 32
fib5 23367 131336 178 0− 24
fib6 32709 760195 140 0− 32
fib7 53828 733192 223 0− 24

17 / 25



Impact of Population Counting

Table: Impact of population counting on memory consumption (for fib6)

Without Population Counting With Population Counting
Array Length Size Length Size
N16 65536 64 KB 65536 64 KB
C16 65536 128 KB 65536 128 KB
N24 6071808 5.79 MB 6071808 5.79 MB
CK24 366 22.87 KB
C24 6071808 23.16 MB 366 1.42 KB
N32 93696 91.50 KB 93696 91.50 KB
Total 29.22 MB 6.09 MB

The memory consumption primarily differs for C24.
98.5% routes in backbone routers are 0− 24 bit long. This is why
most of the entries in C24 remains 0. Population counting
eliminates those entries results significant reduction in memory
consumption.

18 / 25



Impact of Population Counting

Figure: Memory consumption for different FIBs

19 / 25



Lookup Cost

(a) SAIL U (b) SAIL L

Figure: Lookup cost for different levels .

20 / 25



Lookup Cost (Lesson Learned)

The result shows that a general purpose CPU fail to exhibit
deterministic performance.
It also shows that both SAIL U and SAIL L (with
population-counting) exhibit comparable lookup performance.
The result also shows that lookup cost increases for higher level.
For instance, the lookup cost is maximum when the longest prefix
is found in level 32. Again the lookup cost is minimum when it is
found in level 16.

21 / 25



Lookup Cost (Lesson Learned)

It is noteworthy that we disable hyper-threading and frequency
scaling while conducting the experiemnt. This avoids unnecessary
cache thrashing.
Here only considered the data where SAIL is stored in CPU cache
(so that DRAM latency doesn’t affect the actual performance of
the algorithm)
It is noteworthy that FIB lookup in Linux kernel will not act as a
dataplane in a Linux router (it will work as a slow path).

22 / 25



Update cost

Figure: Update cost for different prefix lengths

23 / 25



Update Cost (Lesson Learned)

The result shows SAIL U performs slightly better than SAIL U for
FIB update (when population-counting is used).
It also shows that our implementation can perform fast incremental
update which is needed for the control plane of a Linux router.

24 / 25



Thank You

25 / 25


	Problem statement
	A look inside a Linux router
	SAIL based FIB lookup
	SAIL with Population Counting
	Implementation
	Evaluation of SAIL in a Programmable Pipeline
	Evaluation of SAIL in Linux kernel

