
Leveraging Domino to Implement RCP in a Stateful
Programmable Pipeline

MD Iftakharul Islam, Javed I Khan

Department of Computer Science
Kent State University

Kent, OH, USA.

1 / 20



Outline

1 Problem statement

2 Challenges of line-rate RCP implementation

3 Stateful programmable pipeline and Domino programming
language

4 Congestion in a router data-plane

5 Rate calculation in RCP

6 Implementation

7 Execution of the RCP program in a pipeline

2 / 20



Rate Control Protocol (RCP)

RCP is a router-assisted congestion control mechanism where
routers allocate a feedback rate to each flow.

Figure: Workflow of RCP

3 / 20



RCP Implementation

Router assisted congestion control algorithms such as RCP
[IWQoS 2005], XCP [SIGCOMM 2002] and NC-TCP [ICNP 2017]
exhibit very promising results compared to their host centric
counterparts.

Reduces flow completion time
Reduces queuing delay
Increases throughput and fairness

They however are very hard to implement in the router dataplane.
Currently there is no real deployment of RCP (to the best of our
knowledge).

There are several implementations of RCP based on RMT switch,
FPGA, NPU and so on.
None of them can achieve the line rate needed for a high-speed
router (around 1 billion packets per second)

This paper presents an implementation of RCP that can achieve
line rate.

4 / 20



Challenges of line-rate RCP implementation

RCP calculates throughput based on queue occupancy, spare
capacity, RTT and so on.
This is why, RCP needs to maintain states in the router data plane.
Recently programmable pipeline based RMT switches have
emerged as an alternative to hardware switches.

Example: Barefoot Tofino, Cavium Xplaint, Brodcom Jericho, etc.

RMT switches maintain stateful memories such as counters,
registers and meters in a centralized manner.
Accessing those centralized memories from multiple pipelines
requires explicit synchronization which is not scalable.
This is why, RMT switches are not suitable for implementing RCP.
Recently RCP has been developed in a Cavium Xplaint switch
[NSDI, 2017], but it’s not clear from the paper if it can achieve
line-rate.

5 / 20



Stateful Programmable Pipeline

Recently Domino [SIGCOMM, 2016] presents stateful
programmable pipeline where each pipeline stages keeps a local
state.
This is why, this approach does not need to access centralized
states. So it does not need any synchronization.
This paper presents an implementation of RCP for stateful
programmable pipeline.
We use Domino programming language to program the stateful
programmable pipeline.

It is noteworthy that Domino paper also stated that they have
implemented RCP in router data plane, but their version of RCP
lacked many essential elements of RCP.

6 / 20



Stateful Programmable Pipeline

Figure: Abstract router model based on stateful pipeline

Atoms are circuitry developed based on ALU, MUX and so on.
Atoms in a pipeline can operate on a packet in parallel.
Each atom can process one packet in each clock cycle.
This is why, the pipeline can output 1 packet in every clock cycle.
If the atoms run at 1 GHz, then the pipeline can process 1 billion
packets per second. 7 / 20



Stateful Programmable Pipeline

Currently actual hardware does not exist.
But such stateful programmable pipeline can be realized using a
VLIW processor.
Domino has provided SystemVerilog implementation of the
hardware pipeline showing that it can run at 1 GHz with a 32-nm
standard-cell library.
Domino programming language has been developed to develop
program for stateful pipeline.
Domino-compiler enables us to evaluate a Domino program
without needing the actual hardware.
Domino-compiler follows all-or-nothing approach.

A program compiled by domino-compiler is guarented to run
on the hardware at line-rate. If the program cannot run on the
hardware at line-rate, the compilation fails.

8 / 20



A look inside actual router hardware

Figure: VLIW processor implements the parser and the ingress and the
egress pipeline. Switching fabric works as the queue between the ingress
and the egress pipeline.

9 / 20



Congestion in a router data-plane

Figure: Congestion occurs due to the inability of the egress pipeline to
forward packets at the incoming rate. This is why, RCP program would be
executed in the egress pipeline.

10 / 20



Rate calculation in RCP

RCP protocol calculates the feedback rate as:

R(t) = R(t − RTTa) +
α.S − β. Q(t)

RTTa

ˆN(t)
(1)

where
R(t) = Feedback rate
Q(t) = Queue size (for the line card)
C = Link capacity
RTTa = Running average of RTT
S = Spare capacity
ˆN(t) = Estimated number of flows

α and β are stability constants.
If there a spare capacity (S > 0), RCP increases the feedback rate
If there a persistent queue (Q(t) > 0), RCP decreases the
feedback rate.

11 / 20



Rate calculation in RCP

Calculating ˆN(t) however is very expensive.
RCP approximates ˆN(t) as ˆN(t) = C

R(t−RTTa)

This is why, the RCP control rate becomes

R(t) = R(t − RTTa) +
α.S − β. Q(t)

RTTa
C

R(t−RTTa)

= R(t − RTTa)[1 +
α.S − β. Q(t)

RTTa

C
]

(2)

Here RTTa is used as the control interval.
However we want the control interval to be smaller than the RTTa
so that the router can react to the spare capacity and queuing
delay sooner.
RCP scales the aggregate change by T

RTTa
where T is the desired

control interval.
All these equations are presented in original RCP paper.

12 / 20



Rate calculation in RCP

RCP control equation becomes:

R(t) = R(t − T )[1 +
T

RTTa
.(α.S − β. Q(t)

RTTa
)

C
] (3)

We set T = 50 ms
We set α = 1.0 and β = 0.5 (chosen based on RCP’s stability
analysis).
RTTa is calculated as RTTa = .98 ∗ RTTa + .02 ∗ RTTpacket for
each incoming packet
S is calculated as S = C − B

1000T MB where B is the number of
bytes received during last T milliseconds.

13 / 20



Implementation

We have implemented RCP using Domino (details are in the
paper ).
Domino has notion called packet transaction where we implement
the packet processing logic as if the program will be applied on
the packet at once.
Domino-compiler generates a dependency graph from the packet
transaction and maps it to stateful pipeline stages (the
dependency graph would be found in paper )
It is noteworthy that packet size, RTT, queue length, time, etc are
made available to packet transaction as packet-header and
meta-data as following:

14 / 20



Implementation

Packet parser is responsible for parsing the packet header and
producing RTT, feedback rate and so on.

RCP sender and receiver put those information in RCP header.
Domino does not parse the packet. It simply assumes that packet is
already parsed.
Packet parsing is rather trivial (can be defined by a P4 program)

Time, queue length, packet size, etc are made available as a
meta-data.

In-band Network Telemetry (INT) standard adopted by several
switch manufacturers

Domino has 7 predefined atoms. We need to provide the atom
type in order to compile the Domino program. Here we use SUB
atom to compile our program.

15 / 20



SUB atom

Figure: Atom used for compiling RCP. Here MUX is a multiplexer. RELOP is a
relational operator (>,<,==, ! =). x is a state variable. ALU is the arithmetic
logic unit. pkt .f1 and pkt .f2 are packet fields. Const is a constant operand.

16 / 20



Implementation

It has shown that SUB atom can run at 1 GHz.
Domino-compiler internally uses SKETCH tool to map between a
domino program and the underlying atom
Domino compiler can compile our program with a 15 stage
pipeline where each pipeline stage contains 2 SUB atoms.
This shows that RCP can be implemented on a VLIW processor at
line-rate.

17 / 20



Execution of the RCP program in a 15-stage pipeline

18 / 20



Execution of the RCP program in a 15-stage pipeline

Here grey boxes represents a stateful atom (SUB atom).
White boxes are stateless atom which can be realized by a simple
ALU.
It is noteworthy that a Domino program is mapped to the pipeline
during compilation. This is why it results a very deterministic
results (unlike super scaler or general purpose processors)

19 / 20



Thank You

20 / 20


	Problem statement
	Challenges of line-rate RCP implementation
	Stateful programmable pipeline and Domino programming language
	Congestion in a router data-plane
	Rate calculation in RCP
	Implementation
	Execution of the RCP program in a pipeline

